[1]Dongarra
J, Beckman P, Moore T, et al. The international exascale software
project roadmap[J]. International Journal of High Performance Computer
Applications, 2011, 25(1): 3-60.
[2]迟学斌, 赵毅. 高性能计算技术及其应用[J]. 中国科学院院刊, 2007, 22(4): 306-313. DOI:10.3969/j.issn.1000-3045.2007.04.012
[3]陈志明. 科学计算:科技创新的第三种方法[J]. 中国科学院院刊, 2012, 27(2): 161-166. DOI:10.3969/j.issn.1000-3045.2012.02.004
[4]中国科学院数理学部"高性能计算战略研究"咨询组. 加速发展我国高性能计算的若干建议[J]. 科研信息化技术与应用, 2008, 1(3): 1-7.
[5]Colella
P. Defining software requirements for scientific computing//Patterson
D. Can Computer Architecture Improve Scientific
Productivity?[2019-6-10].
http://www.lanl.gov/conferences/salishan/salishan2005/supinski.pdf.
[6]陈援.中科院"高性能并行计算"联合攻关组运用曙光1000喜获多项成果.中国科学报, 1996-03-15(2).
[7]魏芳, 陈援.中科院"高性能并行计算"联合攻关获多项高水平成果.人民日报(海外版), 1996-03-30(4).
[8]Yang
C, Xue W, Fu H, et al. 10M-core scalable fullyimplicit solver for
nonhydrostatic atmospheric dynamics//SC'16 Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Article No. 6, Salt Lake City, Utah, November
13-18, 2016.
[9]刘海龙.高分辨率海洋环流模式和热带太平洋上层环流的模拟研究.北京: 中国科学院研究生院, 2002.
[10]张学洪, 俞永强, 刘海龙, 等. 海洋环流模式的发展和应用Ⅰ.全球海洋环流模式[J]. 大气科学, 2003, 27(4): 607-617. DOI:10.3878/j.issn.1006-9895.2003.04.12
[11]王文浩, 姜金荣, 王玉柱, 等. 海洋模式LICOM的MIC并行优化[J]. 科研信息化技术与应用, 2015, 6(3): 60-67.
[12]Martin
M, Singh D, Mourino J, et al. High performance air pollution modeling
for a power plant environment[J]. Parallel Computing, 2003, 29:
1763-1790. DOI:10.1016/j.parco.2003.05.018
[13]Lieber,
M, Wolke, R. Optimizing the coupling in parallel air quality model
systems[J]. Environmental Modelling & Software, 2008, 23(2):
235-243.
[14]朱云, Lin Che-jen, 陈春贻, 等. 64位Linux并行计算大气模型效率优化研究[J]. 计算机应用研究, 2009, 26(6): 2266-2269. DOI:10.3969/j.issn.1001-3695.2009.06.081
[15]王自发, 吴其重, Gbaguidi A, 等. 北京空气质量多模式集成预报系统的建立及初步应用[J]. 南京信息工程大学学报(自然科学版), 2009, 1(1): 19-26.
[16]Wang
H, Lin J, Wu Q, et al. MP CBM-Z V1.0:design for a new Carbon Bond
Mechanism Z (CBM-Z) gas-phase chemical mechanism architecture for
next-generation processors[J]. Geoscientific Model Development, 2019,
12(2): 749-764. DOI:10.5194/gmd-12-749-2019
[17]Wang
Y, Chen H, Wu Q, et al. Three-year, 5 km resolution China PM2.5
simulation:Model performance evaluation[J]. Atmospheric Research, 2018,
207: 1-13. DOI:10.1016/j.atmosres.2018.02.016
[18]Shaw
D, Dror R, Salmon J, et al. Millisecond-scale molecular dynamics
simulations on Anton//SC'09 Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, Article No. 39,
Portland, Oregon, November 14-20, 2009.
[19]Shaw
D, Grossman J, Bank J, et al. Anton 2: Raising the bar for performance
and programmability in a special-purpose molecular dynamics
supercomputer//SC'14 Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 41-53,
New Orleans, Louisiana, November 16-21, 2014.
[20]杜勇, 李凯, 赵丕植. 研发铝合金的集成计算材料工程[J]. 航空材料学报, 2017, 37(1): 1-18.
[21]李波, 杜勇, 邱联昌, 等. 浅谈集成计算材料工程和材料基因工程:思想及实践[J]. 中国材料进展, 2018, 38(7): 506-525.
[22]关永军, 陈柳, 王金三. 材料基因组技术内涵与发展趋势[J]. 航空材料学报, 2016, 36(3): 71-78.
[23]Christodoulou
J. Integrated computational materials engineering and materials genome
initiative:Accelerating materials innovation[J]. Advanced Materials
& Processes, 2013, 171(3): 28-31.
[24]刘梓葵. 关于材料基因组的基本观点及展望[J]. 科学通报, 2013, 58(35): 3618-3622.
[25]Zhang
J, Zhou C, Wang Y, et al. Extreme-scale phase field simulations of
coarsening dynamics on the Sunway Taihulight supercomputer//SC'16
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Article No. 4, Salt Lake
City, Utah, November 13-18, 2016.
[26]Yu
H, Emberson J, Inman D, Zhang T, et al. Differential neutrino
condensation onto cosmic structure[J]. Nature Astronomy, 2017, 1: 0143.
DOI:10.1038/s41550-017-0143
[27]莫则尧, 张爱清. 并行自适应结构网格应用支撑软件框架JASMIN用户指南[J]. 北京应用物理与计算数学研究所技术报告:T09-JMJL-01, 2009.
[28]张林波, 郑伟英, 卢本卓, 等. 并行自适应有限元软件平台PHG及其应用[J]. 中国科学:信息科学, 2016, 46(10): 1442-1464.